Few-Shot Adversarial Domain Adaptation
نویسندگان
چکیده
This work provides a framework for addressing the problem of supervised domain adaptation with deep models. The main idea is to exploit adversarial learning to learn an embedded subspace that simultaneously maximizes the confusion between two domains while semantically aligning their embedding. The supervised setting becomes attractive especially when there are only a few target data samples that need to be labeled. In this few-shot learning scenario, alignment and separation of semantic probability distributions is difficult because of the lack of data. We found that by carefully designing a training scheme whereby the typical binary adversarial discriminator is augmented to distinguish between four different classes, it is possible to effectively address the supervised adaptation problem. In addition, the approach has a high “speed” of adaptation, i.e. it requires an extremely low number of labeled target training samples, even one per category can be effective. We then extensively compare this approach to the state of the art in domain adaptation in two experiments: one using datasets for handwritten digit recognition, and one using datasets for visual object recognition.
منابع مشابه
Importance Weighted Adversarial Nets for Partial Domain Adaptation
This paper proposes an importance weighted adversarial nets-based method for unsupervised domain adaptation, specific for partial domain adaptation where the target domain has less number of classes compared to the source domain. Previous domain adaptation methods generally assume the identical label spaces, such that reducing the distribution divergence leads to feasible knowledge transfer. Ho...
متن کاملContinuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
Ability to continuously learn and adapt from limited experience in nonstationary environments is an important milestone on the path towards general intelligence. In this paper, we cast the problem of continuous adaptation into the learning-to-learn framework. We develop a simple gradient-based meta-learning algorithm suitable for adaptation in dynamically changing and adversarial scenarios. Add...
متن کاملInvariant Representations for Noisy Speech Recognition
Modern automatic speech recognition (ASR) systems need to be robust under acoustic variability arising from environmental, speaker, channel, and recording conditions. Ensuring such robustness to variability is a challenge in modern day neural network-based ASR systems, especially when all types of variability are not seen during training. We attempt to address this problem by encouraging the ne...
متن کاملAspect-augmented Adversarial Networks for Domain Adaptation
We introduce a neural method for transfer learning between two (source and target) classification tasks or aspects over the same domain. Rather than training on target labels, we use a few keywords pertaining to source and target aspects indicating sentence relevance instead of document class labels. Documents are encoded by learning to embed and softly select relevant sentences in an aspect-de...
متن کاملCatGAN: Coupled Adversarial Transfer for Domain Generation
This paper introduces a Coupled adversarial transfer GAN (CatGAN), an efficient solution to domain alignment. The basic principles of CatGAN focus on the domain generation strategy for adaptation which is motivated by the generative adversarial net (GAN) and the adversarial discriminative domain adaptation (ADDA). CatGAN is structured by shallow multilayer perceptrons (MLPs) for adversarial dom...
متن کامل